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The elastic moduli, their temperature derivatives, and the dynamic piezoelectric constants of trigonal 
potassium bromate, point group 3m, were measured by ultrasonic methods. The coupling coefficient k, 
for longitudinal waves which propagate parallel to the threefold axes is 0.58. As the damping coefficient for 
these waves is extremely small, even at high frequencies up to 100 MHz, trigonal potassium bromate is 
preferentially suitable for highly efficient generators and sensors of ultrasonic waves. The dielectric 
constants are relatively small and no disturbing electric conductivity occurs as, for example, in lithium 
iodate. Therefore this material is superior to most other crystals in its use for such devices. All thermo- 
elastic constants are negative, and it is not possible to cut a crystal with temperature-independent properties. 

Growth properties, static piezoelectric constants and 
non-linear optical properties of KBrO3 single crystals, 
point symmetry group 3m, were reported in an earlier 
paper (Hausstihl, 1971). In the meanwhile still larger 
and better crystals of optical quality with dimensions 
up to several cm could be grown from aqueous solu- 
tions, working with the method of controlled tempera- 
ture lowering between ca 40 and 30°C with growth 
velocities of ca 0-1 mm d-  1. With additives of ca 3 g 
HNO3 and 5 g KBr per litre solution, an essential im- 
provement of the crystal quality could be achieved. 
The main forms developed are, in trigonal-hexagonal 
notation: pyramids {lil_} and {i l i} ,  prism {110}, 
pyramids {102} and {i02}, pedion (001), ordered by 
their morphological rank. 

The axes e~ of the Cartesian reference system are 
connected with the crystallographic axes as according 
to elllal, e3[[a3, e2=e3 x el. The axis a 3 runs parallel 
to the threefold axis, the axis a l is perpendicular to a 
mirror plane. The orientation of the specimens was 
done with the aid of the natural faces and by optical 
means. The specimens for the elastic measurements 
had the form of rectangular parallelepipeda with di- 
mensions of ca 10 x 10 x 10 mm. For the determination 
of the dielectric properties and the electromechanical 
coupling coefficient k,, thin plates with a thickness be- 
tween 0"5 and 0"8 mm and diameters between 15 and 
20 mm were used. 

In piezoelectric crystals there exists a strong coupling 
between mechanical and electric quantities, expressed 
by the following relations: 

E 
O'ij = CijklF, kl - -  emi jEm , 

D i = eiklekl d- eimEm, div D = 0 .* 

Magnetic interactions are neglected. The elasto- 
dynamic equations for the propagation of plane waves 
are (Kyame, 1949; Meier & Schuster, 1953) 

* Summation according Einstein convention. 
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with i=  1,2,3. The above symbols have the following 
meaning, where the indexed ones are tensor compo- 
nents: agj stress tensor, eij strain tensor, C~]kZ elastic 
tensor at constant electric field, eg~k piezoelectric tensor, 
Ei electric field, Di electric displacement, Eg) dielectric 
permittivity tensor at constant strain, 0 density, v velo- 
city of a plane elastic wave with propagation vector k, 
6ij Kronecker delta, g~ unit vector parallel to wave 
vector k, ~i mechanical displacement vector. 

For the complete evaluation of all elastic and piezo- 
electric coefficients the following strategy, which has 
been proved earlier on other strongly piezoelectric 
crystals like K3Cu(CN)4, LiIO3, and 
Al(IO3)3.2HIO3.6H20 (Hausstihl, 1967, 1970, 1972), 
is employed. In the first step, the complete set of di- 
electric coefficients Eg) is determined under 'clamped' 
conditions for the frequency range considered. In the 
20 MHz range, in which the present investigation was 
carried out, the 'clamped' coefficients are approx- 
imately equal to the free coefficients. In the second step, 
static piezoelectric coefficients, defined by ADi= 
dijkAajk for constant electric field, are measured. The 
third step covers the measurement of propagation 
velocities of ultrasonic waves in certain directions. 
These directions should be almost uniformly distrib- 
uted in space. The number of different directions 
depends on the point symmetry of the crystal under 
investigation. For non-piezoelectric triclinic crystals, 
examples for this procedure were given earlier (Haus- 
stihl & Siegert, 1969; Ktippers & Siegert, 1970). In the 
case of piezoelectric crystals, the number of different 
directions must be enlarged appreciably and also the 
accuracy must be higher if all elastic and piezoelectric 
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coefficients are to be determined.  In the present case 
the measurements  were carried out with three methods" 
(a) diffraction of light by s tanding ultrasonic waves at 
frequencies between 15 and 28 M H z  (Schaefer-Berg- 
mann  method),  (b) observat ion of resonance frequen- 
cies of thick plates, (e) observat ion of resonance fre- 
quencies of thin plates with a th ickness :d iameter  
ratio of less than 0.1. For  (b) the Schaefer -Bergmann 
equipment  may  be used; also in the case of piezooptic- 
ally non-active waves as described earlier (Haussiihl, 
1975). The resonance frequencies under  (c) are detected 
from the frequency dependence of the electrical imped- 
ance of the metallized plates. The tempera ture  deriv- 
atives of the velocities are obtained from the tempera-  
ture variat ion of the resonance frequencies with 
methods  (b) and (c). In Table 1 the observed values of 
Qv 2 at 20 and - 2 0  °C are listed for different directions 
with the appropr ia te  displacement  vectors. 

In crystals of point  symmetry  3m the complete evalu- 
at ion of elastic and piezoelectric coefficients can easily 
be solved without  computer  aid. In our  case the proce- 
dure is as follows. The elastic constants  c~e~, c6e6 = 
(e~l _c~:2)/2 ' C33, C 4 4 D  E and cf4 are directly obtained from 
measurements  No. 1, 6, 7, 8, 14, 17 (Table 1). The con- 
stants c~3 and e233 are derived by the relations 

E D 2 e 
C 3 3 = C 3 3 - - e 3 3 3 / E 3 3 = c D 3 ( 1  - - k 2 )  , 

inserting the measured values for the coupling coef- 
ficient k, = 0.58 and the dielectric constant  e~3 = 6"09e °, 
e ° being the vacuum dielectric constant,  kt was deter- 
mined by the method  of Onoe,  Tiersten & Meizler 
(1963) which is based on the anharmonic i ty  of reso- 
nance frequencies of thin plates. Then the only unknown 

elastic constant  left is ClE3 . An approximate  value for 
c~3 is c~4 according to the Cauchy  relation. With  this 
set of elastic constants  and the already known static 
piezoelectric constants  dgm, (Haussiihl, 1971), approx-  
imate values for the coefficients eUk are derived from 
the relation 

1,2 ,3  

eij k = Z E dimnCmnjk • 
m,n 

Inserting now these coefficients and the dielectric 
constants  e]1=6"59e ° and e~3 as given above in the 
basic equat ions for measurements  No. 9, 10, 11, 12, 13, 
15, 16, 18, 19 one obtains a mean value ce3 _~ 1.50. With  
this value and with the condit ion that  the different 
measurements  should yield the same c~3, an improved 
set of eUk and a better  c~3 is obtained. After two runs 
of this type the following results for 20°C were com- 
patible with the limits of experimental  errors:  c ~  = 
4.313, c1E2 = 1.438; c~3 = 1.515; c~e4 = -0 .035 ,  c3E3 = 2.40; 
c~4=1"655 (1011 dyn cm-2) ,  and e113=1.02;  e112 = 
-0"20 ;  Ca11 =0"62; e333=2-40 (105 e.s.u, cm-2).  

In order  to achieve a refinement from the whole over- 
determined system of measurements  (Table 1) a com- 
puter  p rogram for least-squares est imation of nonlin- 
ear parameters ,  which we had successfully applied for 
the evaluat ion of elastic constants  in non-piezoelectric 
triclinic crystals (Haussiihl & Siegert, 1969), was ex- 
tended to piezoelectric crystals in t roducing the full 
piezoelectric interact ion as noted in the basic equa- 
tions. The first runs with arbi t rary  initial values yielded 
only unsat isfactory results because the q)2 value (sum 
of squares of residuals) remained too high. We found 
that  the parameter  output  depended strongly on the 
initial guess values, if all parameters  were allowed to 

Table 1. Measured  values o f  ~V 2 in KBrO3 at 20 and - 2 0  °C 

g= [gl, g2, g3] unit propagation vector, ~ = [~1, 42, 43] unit vector of mechanical displacement, g and ~are noted in the Cartesian reference 
system; v in 105 cm s-l;  Cu in Voigt notation. 

Relation between v and elastic 
No. [g l ,g2 ,g3]  [-~1, ~2, ~31 Type of wave Qv2 (20oc). Q/p2 (_20oc ) t  constants 

1 [ 1, 0, 0] [- 1, 0, 0] longitudinal 4.314 4.464 Qv 2 -- c~el 
2 [1, 0, 0] [0, a, b] transverse 1.432 1.492 see basic equations 
3 [1, 0, 0] [0, b, a] transverse 1-849 1 "923 see basic equations 
4 [0, 1, 0] [0, c, d] quasi-longitudinal 4.318 4.480 see basic equations 
5 [0, 1, 0] f0 d ~ ) ~  quasi-transverse 1.438 1-497 see basic equations 
6 [0, 1, 1', 0', transverse 1.853 1.929 OvZ=c~6 
7 [0, 0, 1] [0, 0, 1] longitudinal 3.602 3.730 0v 2 = c°3 
8 1-0, 0, 1] [1, 0, 0] transverse 1-655 1.715 Qv 2= c~4 
9 [0, -0.6157, 0.788] [0, e,f] quasi-longitudinal 4-565 4.741 see basic equations 

10 [-0, -0-6157, 0.7881 [0,J~ e I quasi-transverse 0"968 - -  see basic equations 
11 [0, 0-788, 0"6157] [0, g, hi quasi-longitudinal 4.857 5.031 see basic equations 
12 [-0, -0-5225, 0.8526] [0, i, jl quasi-longitudinal 4.399 4.574 see basic equations 
13 1-0 -0-5225, 0"8526J [0,], i I quasi-transverse 1"035 1"061 see basic equations 
14 [0', -0-5225, 0.8526] [1, 0, 0] transverse 1-638 1-694 v 2 2 E 2 E = g2c66 + g3c44 + 2gagac~a 
15 [-0, 0.8434, 0.5373] [0, k, l] quasi-longitudinal 4.829 5.016 see basic equations 
16 [0, 0.8434, 0.53731 [0, k, l I quasi-transverse 1.111 - -  see basic equations 
17 [0, 0.8434, 0.5373] 1-1, 0, 0] transverse 1.474 1.526 v 2 =g2ce66 +g2c4e 4 + 2g2g3ce4 
18 [0, 0"7071, 0"7071] [0, m, n] quasi-longitudinal 4.813 4-990 see basic equations 
19 [0, -0.7071, 0.7071] [0, p, q] quasi-longitudinal 4.658 4-841 see basic equations 

* With Q(20 °C) = 3-255 g cm- 3. 
t For density and thickness corrections the values 

interferometer, were used. 
of thermal expansion ~11= 52 and C~aa =21 x 10 -6  deg-1, as obtained with a Fizeau 

AC 33A-5" 
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Table 2. Elastic constants c~ at 20 and - 2 0  °C, 
thermoelastic constants T~ i = d log c~/dT at 0 °C, 

and piezoelectric constants eij k o f  KBrO3 

Units: c~ i in 10 ~1 dyn cm-2; T/j in 10-3 deg- 1; eijk in 105 e.s.u, cm- 2. 
Limits of probable relative error are given in parentheses. 

ij c~ (20 °C) c~ (-20 °C) T~: (0 °C) 
11 4.312 (0.3%) 4.468 (0.3%) -0-89 (5%) 
12 1.439 (0.5 %) 1.480 (0.5 %) -0.70 (8 %) 
13 1.547 (1%) 1.562 (1%) -0.24 (20%) 
14 -0-034 (10%) -0-026 (10%) -6.67 (--) 
33 2.360 (0.5 %) 2.435 (0.5 %) - 0.78 (6 %) 
44 1.655 (0.5%) 1.719 (0.5%) -0.95 (6%) 
66 1"437 (0"5 %) 1"494 (0"5 %) - 0"97 (6 %) 

ijk eiik (20 °C) eiik (--20 °C) 
112 -0"205 (10%) -0"21 (20%) 
113 1"00 (5 ?/o) 1"04 (5 %) 
311 0.51 (10%) 0.61 (10%) 
333 2"43 (3 %) 2"48 (3 %) 

vary. With the above-listed 'hand-calculated' initial 
values an acceptable (~2 of 0.002 × 1022 dyn 22 cm -4 
could be obtained for the 20 and - 2 0  °C sets of meas- 
urements. These parameters are listed in Table 2 
together with their temperature derivatives and the 
limits of probable relative error. 

Elastic and thermoelastic constants of KBrO3 pos- 
sess the same order of magnitude as chemically and 
structurally related compounds like NaBrO3 (Haus- 
siJhl, 1964). The elastic anisotropy, characterized by 
the ratio E E c33/c11, indicates a minimum in the mean 
chemical bond strength parallel to the threefold axis. 
According to the Griineisen relation one would expect 
that the thermal expansion would exhibit its maximum 
value in the direction of the threefold axis, but the 
opposite is observed. A difference occurs also in the 
deviations from the Cauchy relation (c~2-c~6) and 
(c~3 -c~4), both of which are slightly negative, contrary 
to comparable compounds. The temperature de- 
rivatives for all elastic wave velocities are negative, 
therefore no temperature-independent crystal cuts for 
the generation of sound waves are possible. 

Concerning the applicability for technical devices, 
the piezoelectric properties deserve great interest. 

First of all, the electromechanical coupling coefficient 
for longitudinal ultrasonic waves which propagate 
parallel to the threefold axis, k,=0"58, is one of the 
highest values known in non-ferroelectric materials. 
The temperature derivative dlog kt/d T was determined 
to be -0-57  x 10 -3 deg-1 in the range between - 5 0  
and 90 °C, where no anomalous behaviour of k, could 
be detected. Therefore, the existence of a phase transi- 
tion in that temperature region is rather improbable. 
Measurements of overtone resonances in thin plates 
up to 100 MHz  revealed that ultrasonic waves are only 
very weakly attenuated even at such high frequencies. 
There exists no disturbing electrical conductivity, as 
in the case of LiIO3, and the dielectric constants are 
rather small. Grinding and polishing properties are 
excellent. Because of the low water solubility of KBrO3 
at room temperature, the polished surfaces remain 
stable in dry air without taking any further precaution. 

All the above-mentioned properties show KBrO3 
to be a most suitable material for the fabrication of 
ultrasonic wave generators and sensors, much superior 
to most of the other materials in use today. 

The author is highly indebted to H. Siegert for 
developing the computer program. 
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